Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on plutonium burner high temperature gas-cooled reactor in Japan; Introduction scenario, reactor safety and fabrication tests of the 3S-TRISO fuel

Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.

Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02

 Times Cited Count:1 Percentile:11.8(Nuclear Science & Technology)

The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.

Journal Articles

Development of security and safety fuel for Pu-burner HTGR, 2; Design study of fuel and reactor core

Goto, Minoru; Ueta, Shohei; Aihara, Jun; Inaba, Yoshitomo; Fukaya, Yuji; Tachibana, Yukio; Okamoto, Koji*

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 6 Pages, 2017/07

A PuO$$_{2}$$-YSZ fuel kernel with a ZrC coating, which enhances safety, security and safeguard, namely: 3S-TRISO fuel, was proposed to introduce to the plutonium-burner HTGR. In this study, the efficiency of the ZrC coating as the free-oxygen getter was examined based on a thermochemical calculation. A preliminary study on the feasibility of the 3S-TRISO fuel was conducted focusing on the internal pressure. Additionally, a nuclear feasibility of the reactor core was studied. As a result, all the amount of the free-oxygen is captured by a thin ZrC coating under 1600$$^{circ}$$C and coating ZrC on the fuel kernel should be very effective method to suppress the internal pressure. The internal pressure of the 3S-TRISO fuel at 500 GWd/t is lower than that of UO$$_{2}$$ kernel TRISO fuel whose feasibility had been already confirmed and the 3S-TRISO fuel should be feasible. The fuel shuffling allows to achieve 500 GWd/t. The temperature coefficient of reactivity is negative during the operation period and thus the nuclear feasibility of the reactor core should be achievable.

Journal Articles

Conceptual study of a plutonium burner high temperature gas-cooled reactor with high nuclear proliferation resistance

Goto, Minoru; Demachi, Kazuyuki*; Ueta, Shohei; Nakano, Masaaki*; Honda, Masaki*; Tachibana, Yukio; Inaba, Yoshitomo; Aihara, Jun; Fukaya, Yuji; Tsuji, Nobumasa*; et al.

Proceedings of 21st International Conference & Exhibition; Nuclear Fuel Cycle for a Low-Carbon Future (GLOBAL 2015) (USB Flash Drive), p.507 - 513, 2015/09

A concept of a plutonium burner HTGR named as Clean Burn, which has a high nuclear proliferation resistance, had been proposed by Japan Atomic Energy Agency. In addition to the high nuclear proliferation resistance, in order to enhance the safety, we propose to introduce PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating to the Clean Burn. In this study, we conduct fabrication tests aiming to establish the basic technologies for fabrication of PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating. Additionally, we conduct a quantitative evaluation of the security for the safety, a design of the fuel and the reactor core, and a safety evaluation for the Clean Burn to confirm the feasibility. This study is conducted by The University of Tokyo, Japan Atomic Energy Agency, Fuji Electric Co., Ltd., and Nuclear Fuel Industries, Ltd. It was started in FY2014 and will be completed in FY2017, and the first year of the implementation was on schedule.

Journal Articles

Weapons-grade plutonium burning with high-temperature gas-cooled reactors using plutonium burner balls and thorium breeder balls

Yamashita, Kiyonobu; *; Fujimoto, Nozomu

Nuclear Science and Engineering, 126(1), p.94 - 100, 1997/05

 Times Cited Count:2 Percentile:23.01(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Destruction of weapons-grade plutonium with pebble bed type HTGRs using burner balls and breeder balls

Yamashita, Kiyonobu; *; Shindo, Ryuichi; Murata, Isao; Saikusa, Akio

Nihon Genshiryoku Gakkai-Shi, 36(9), p.865 - 868, 1994/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

no abstracts in English

Oral presentation

Design study on fuel and reactor core for plutonium burner high temperature gas-cooled reactor

Goto, Minoru; Inaba, Yoshitomo; Fukaya, Yuji; Ueta, Shohei; Aihara, Jun; Tachibana, Yukio; Kunitomi, Kazuhiko

no journal, , 

A concept of a plutonium burner HTGR (High Temperature Gas-cooled Reactor) with a high nuclear proliferation resistance has been proposed by Japan Atomic Energy Agency. In addition to the high nuclear proliferation resistance, in order to attain the high burn-up, we propose to introduce a PuO$$_{2}$$-YSZ (Yttria Stabilized Zirconia) fuel kernel with ZrC coating to the plutonium burner HTGR. In this study, we conduct design of the coated fuel particle and of the reactor core to confirm the feasibility of the plutonium burner HTGR. This study was started in FY2014 and will be completed in FY2017, and the implementation is on schedule. This paper describes the implementation of the first and the second year.

Oral presentation

Conceptual study of a Pu-burner HTGR with high nuclear proliferation resistance

Goto, Minoru

no journal, , 

We conduct a quantitative evaluation of security, a design of the fuel and the reactor core, a safety evaluation and a fabrication tests of PuO$$_{2}$$-YSZ TRISO fuels with ZrC coating to establish the basic technologies of the plutonium burner HTGR with a high nuclear proliferation resistance. This study is conducted by The University of Tokyo, Japan Atomic Energy Agency, Fuji Electric Co., Ltd., and Nuclear Fuel Industries, Ltd. It was started in FY2014 and will be completed in FY2017. The outline of the study is explained in the presentation.

7 (Records 1-7 displayed on this page)
  • 1